直接给出代码:
class DataPreFetcher(object): def __init__(self, loader): self.loader = iter(loader) self.stream = torch.cuda.Stream() self.preload() def preload(self): try: self.next_data = next(self.loader) except StopIteration: self.next_data = None return with torch.cuda.stream(self.stream): for k, v in self.next_data.items(): if isinstance(v, torch.Tensor): self.next_data[k] = self.next_data[k].cuda(non_blocking=True) def next(self): torch.cuda.current_stream().wait_stream(self.stream) data = self.next_data self.preload() return data
class data_prefetcher(): def __init__(self, loader): #loader 1:real #loader 2:fake self.stream = torch.cuda.Stream() self.loader = iter(loader) self.preload() def preload(self): try: self.next_input, self.next_target = next(self.loader) except StopIteration: self.next_input = None self.next_target = None return with torch.cuda.stream(self.stream): self.next_input = self.next_input.cuda(non_blocking=True).float() self.next_target = self.next_target.cuda(non_blocking=True).long() def next(self): torch.cuda.current_stream().wait_stream(self.stream) input = self.next_input target = self.next_target self.preload() return input, target
class DataPreFetcher(object): def __init__(self, dataLoader): self.stream = torch.cuda.Stream() self.dataLoader = iter(dataLoader) self.preload() def preload(self): try: self.next_batch_data = next(self.dataLoader) except StopIteration: self.next_batch_data = None return with torch.cuda.stream(self.stream): for k, v in self.next_batch_data.items(): if isinstance(v, torch.Tensor): self.next_batch_data[k] = self.next_batch_data[k].cuda(non_blocking=True) def next(self): torch.cuda.current_stream().wait_stream(self.stream) batch_data = self.next_batch_data self.preload() return batch_data
参考资料:
pytorch使用data_prefetcher提升数据读取速度
使用DataPrefetcher加速PyTorch的dataloader
【pytorch】给训练踩踩油门-- Pytorch 加速数据读取